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Abstract. Schemes for encrypted key exchange are designed to provide two entities communicating
over a public network, and sharing a (short) password only, with a session key to be used to achieve
data integrity and/or message confidentiality. An example of a very efficient and “elegant” scheme
for encrypted key exchange considered for standardization by the IEEE P1363 Standard working
group is AuthA. This scheme was conjectured secure when the symmetric-encryption primitive is
instantiated via either a cipher that closely behaves like an “ideal cipher”, or a mask generation
function that is the product of the message with a hash of the password. While the security of this
scheme in the former case has been recently proven, the latter case was still an open problem. For
the first time we prove in this paper that this scheme is secure under the assumptions that the hash
function closely behaves like a random oracle and that the computational Diffie-Hellman problem
is difficult. Furthermore, since Denial-of-Service (DoS) attacks have become a common threat we
enhance AuthA with a mechanism to protect against them.

1 Introduction

The need for authentication is obvious when two entities communicate on the Internet. However,
proving knowledge of a secret over a public link without leaking any information about this secret
is a complex process. One extreme example is when a short string is used by a human as a means
to get access to a remote service. This password is used by the human to authenticate itself to
the remote service in order to establish a session key to be used to implement an authenticated
communication channel within which messages set over the wire are cryptographically protected.
Humans directly benefit from this approach since they only need to remember a low-quality
string chosen from a relatively small dictionary (i.e. 4 decimal digits).

The seminal work in this area is the Encrypted Key Exchange (EKE) protocol proposed by
Bellovin and Merritt in [5, 6]. EKE is a classical Diffie-Hellman key exchange wherein the two
flows are encrypted using the password as a common symmetric key. This encryption primitive
can be instantiated via either a password-keyed symmetric cipher or a mask generation function
computed as the product of the message with a hash of the password. This efficient structure
of EKE has been more recently instantiated in different ways in [7] (with the PPK and the PAK

schemes) and with AuthA, considered for standardization by the IEEE P1363 Standard working
group on public-key cryptography [3]. The AuthA instantiation with a single mask generation
function was conjectured secure against dictionary attacks by its designers, but actually proving
it was left as an open problem.

Cryptographers have indeed began to analyze the AuthA protocol in an ideal model of compu-
tation wherein a hash function is modeled via a random function and a block cipher is modeled
via random permutations [2, 5, 8]. These analyses have provided useful arguments in favor of
AuthA, but do not guarantee that AuthA is secure in the real world. They only show that AuthA

is secure against generic attacks that do not exploit a particular implementation of the block
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cipher, but in practice current block ciphers are far from being random permutations. A security
proof in the random-oracle model only, while still using ideal objects, would provide a stronger
and more convincing argument in favor of AuthA.

One should indeed note that the ideal-cipher model seems to be a stronger model than the
random-oracle one. Even if one knows constructions to build random permutations from random
functions [12], they cannot be used to build ideal ciphers from random oracles. The difference
here comes from the fact that the inner functions (random oracles) are available to the adversary.
It could compute plaintext-ciphertext relations starting from the middle of the Feistel network,
while in the programmable ideal-cipher model, one needs to control all these relations.

Moreover, a AuthA scheme resistant to Denial-of-Service (DoS) attacks would be more suited
to the computing environment we face every day since nowadays through the Internet hackers
make servers incapable of accepting new connections. These so-called Distributed DoS attacks
exhaust the memory and computational power of the servers.

Contributions. This paper examines the security of the AuthA password-authenticated key
exchange protocol, with a single mask generation function computed as the product of the
message with a hash of the password, in the random-oracle model under the computational
Diffie-Hellman assumption; no ideal-cipher assumption is needed. We work out our proofs by
first defining the execution of AuthA in the communication model of Bellare et al. [2] and then
adapting the proof techniques recently published by Bresson et al. [8]. We exhibit very compact
and “elegant” proofs to show that the One-Mask (OMDHKE– one flow is encrypted only) and
the Two-Mask (MDHKE– both flows are encrypted) formal variants of AuthA and EKE are secure
in the random-oracle model when the encryption primitive is a mask generation function.

We define the execution of AuthA in the Bellare et al.’s model wherein the protocol entities are
modeled through oracles, and the various types of attacks are modeled by queries to these oracles.
This model enables a treatment of dictionary attacks by allowing the adversary to obtain honest
executions of the AuthA protocol. The security of AuthA against dictionary attacks depends on
how many interactions the adversary carries out against the protocol entities rather than on the
adversary’s computational power.

We furthermore enhance the schemes with a mechanism that offers protection against Denial-
of-Service (DoS) attacks. This mechanism postpones the computation of any exponentiations
on the server side, as well as the storage of any states, after that the initiator of the connection
has been identified as being a legitimate client. Roughly speaking, the server sends to the client
a “puzzle” [11] to solve which will require from the client to perform multiple cryptographic
computations while the server can easily and efficiently check that the solution is correct.

Related Work. The IEEE P1363.2 Standard working group on password-based authenticated
key-exchange methods [10] has been focusing on key exchange protocols wherein clients use short
passwords in place of certificates to identify themselves to servers. This standardization effort
has its roots in the works of Bellare et al. [2] and Boyko et al. [7], wherein formal models and
security goals for password-based key agreement were first formulated. The two papers analyzed
the EKE (where EKE stands for Encrypted Key Exchange) protocol [5], a classical Diffie-Hellman
key exchange wherein the two flows are encrypted using the password as a common symmetric
key, or slight variants. Several security proofs have been proposed, in various models, but all
very intricate.

One-mask and two-mask variants of EKE have been analyzed, and proven in the random-
oracle model only [7], but in a different security model than ours, based on the multi-party
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simulatability paradigm1. The main contribution of the present paper is the very short and
“elegant” proof of OMDHKE in the Bellare et al. security model (but also of MDHKE in the
appendix), that is less prone to errors.

Several works have already focused on designing mechanisms to protect against DoS attacks.
Aiello et al. [1] treat the amount of Perfect Forward-Secrecy (PFS) as an engineering parameter
that can be traded off against resistance to DoS attacks. DoS-resistance is achieved by saving
the “state” of the current session in the protocol itself (i.e., in the flows) rather than on the
server side. More precisely, the “state” of the protocol is hashed and put into a cookie, while the
server needs only to memorize the hash value. Only once this is done, the server saves the full
state and the connection is established. This technique prevents the attacker from exhausting
the server’s memory but do not prevent it from exhausting the server’s computational power.
One approach to counter the latter threat is to make the client compute some form of proof
of computational effort, using a “puzzle” [11], also more recently used by Dwork et al. [9] to
discourage spam. The present paper builds on that latter concept.

2 The OMDHKE Protocol: One-Mask Diffie-Hellman Key Exchange

The arithmetic is in a finite cyclic group G = 〈g〉 of order a `-bit prime number q, where the
operation is denoted multiplicatively. We also denote by G

? the subset G\{1} of the generators
of G. Hash functions from {0, 1}? to {0, 1}`i are denoted Hi, for i = 0, 1. While G denotes a full-
domain hash function from {0, 1}? into G. As illustrated on Figure 1 (with an honest execution
of the OMDHKE protocol), the protocol runs between two parties A and S, and the session-key
space SK associated to this protocol is {0, 1}`0 equipped with a uniform distribution.

The parties initially share a low-quality string pw , the password, drawn from the dictionary
Password according to the distribution Dpw . In the following, we use the notation Dpw (q) for the
probability to be in the most probable set of q passwords:

Dpw (q) = max
P⊆Password

{

Pr
pw∈Dpw

[pw ∈ P |#P ≤ q]

}

.

Note that if we denote by UN the uniform distribution among N passwords, UN (q) = q/N .

The protocol then runs as follows. The client chooses at random a private random exponent
x and computes the corresponding Diffie-Hellman public value gx, but does not send this last
value in the clear. The client encrypts the Diffie-Hellman public value using a mask generation
function as the product of a Diffie-Hellman value with a full-domain hash of the password. Upon
receiving this encrypted value, the server unmasks it and computes the Diffie-Hellman secret
value gxy which is used by the server to compute its authenticator AuthS and the session key. The
server sends its Diffie-Hellman public value gy in the clear, AuthS , and terminates the execution
of the protocol. Upon receiving these values, the client computes the secret Diffie-Hellman value
and checks that the authenticator AuthS is a valid one. If the authenticator is valid, the client
computes the session key, and terminates the execution of the protocol.

3 The Formal Model

The security model is the same as the one defined by Bellare et al. [2]. We briefly review it.

1 We recently learned that Philip MacKenzie has independently analyzed the security of PPK and PAK in the Bel-
lare et al. security model: “The PAK Suite: Protocols for Password-Authenticated Key Exchange” in DIMACS
Technical Report 2002-46.
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Client A Server S

Initialization

pw ∈ Password, PW = G(pw) ∈ G

accept← terminate← false accept← terminate← false

x
R
← Zq, X ← gx

X? ← X × PW
A, X?

−−−−−−−−−−−−−−−−−→ X ← X?/PW

y
R
← Zq, Y ← gy

KS ← Xy

KA ← Y x S, Y, AuthS
←−−−−−−−−−−−−−−−−− AuthS ←H1(A‖S‖X

?‖Y ‖PW‖KS)

AuthS
?
= H1(A‖S‖X

?‖Y ‖PW‖KA)
if true, accept← true accept← true

skA ←H0(A‖S‖X
?‖Y ‖PW‖KA) skS ←H0(A‖S‖X

?‖Y ‖PW‖KS)
terminate← true terminate← true

Fig. 1. An execution of the protocol OMDHKE, run between a client and a server.

The Security Model. We denote by A and S two parties that can participate in the key
exchange protocol P . Each of them may have several instances called oracles involved in distinct,
possibly concurrent, executions of P . We denote A (resp. S) instances by Ai (resp. Sj), or by
U when we consider any user instance. The two parties share a low-entropy secret pw which is
drawn from a small dictionary Password, according to the distribution Dpw .

The key exchange algorithm P is an interactive protocol between Ai and Sj that provides
the instances of A and S with a session key sk. During the execution of this protocol, the
adversary has the entire control of the network, and tries to break the privacy of the key, or the
authentication of the players. To this aim, several queries are available to it. Let us briefly recall
the capability that each query captures:

– Execute(Ai, Sj): This query models passive attacks, where the adversary gets access to honest
executions of P between the instances Ai and Sj by eavesdropping.

– Reveal(U): This query models the misuse of the session key by instance U (known-key at-
tacks). The query is only available to A if the attacked instance actually “holds” a session
key and it releases the latter to A.

– Send(U,m): This query enables to consider active attacks by having A sending a message to
instance U . The adversary A gets back the response U generates in processing the message m
according to the protocol P . A query Send(Ai, Start) initializes the key exchange algorithm,
and thus the adversary receives the initial flow the player A should send out to the player
S.

In the active scenario, the Execute-query may at first seem useless since using the Send-query
the adversary has the ability to carry out honest executions of P among parties. Yet, even in
this scenario, the Execute-query is essential for properly dealing with dictionary attacks. The
number qs of Send-queries directly asked by the adversary does not take into account the number
of Execute-queries. Therefore, qs represents the number of flows the adversary has built by itself,
and therefore the number of passwords it would have tried.
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Security Notions. As already noticed, the aim of the adversary is to break the privacy of the
session key (a.k.a., semantic security) or the authentication of the players (having a player ac-
cepting while no instance facing him). The security notions take place in the context of executing
P in the presence of the adversary A. One first draws a password pw from Password according
to the distribution Dpw , provides coin tosses to A, all oracles, and then runs the adversary by
letting it ask any number of queries as described above, in any order.

AKE Security. The privacy (semantic security) of the session key is modeled by the game
Gameake(A, P ), in which one more query is available to the adversary: Test(U). The Test-
query can be asked at most once by the adversary A and is only available to A if the attacked
instance U is Fresh (which roughly means that the session key is not “obviously” known to
the adversary.) This query is answered as follows: one flips a (private) coin b and forwards sk
(the value Reveal(U) would output) if b = 1, or a random value if b = 0. When playing this
game, the goal of the adversary is to guess the bit b involved in the Test-query, by outputting
this guess b′. We denote the AKE advantage as the probability that A correctly guesses the
value of b. More precisely we define Advake

P (A) = 2Pr[b = b′] − 1. The protocol P is said to be
(t, ε)-AKE-secure if A’s advantage is smaller than ε for any adversary A running with time t.

Authentication. Another goal is to consider unilateral authentication of either A (A-Auth) or
S (S-Auth) wherein the adversary impersonates a party. We denote by SuccA−auth

P (A) (resp.

SuccS−auth
P (A)) the probability that A successfully impersonates an A instance (resp. an S in-

stance) in an execution of P , which means that S (resp. A) agrees on a key, while the latter is
shared with no instance of A (resp. S). A protocol P is said to be (t, ε)-Auth-secure if A’s
success for breaking either A-Auth or S-Auth is smaller than ε for any adversary A running with
time t.

3.1 Computational Diffie-Hellman Assumption

A (t, ε)-CDHg,G attacker, in a finite cyclic group G of prime order q with g as a generator, is
a probabilistic machine ∆ running in time t such that its success probability Succcdh

g,G(∆), given

random elements gx and gy to output gxy, is greater than ε. As usual, we denote by Succcdh
g,G(t) the

maximal success probability over every adversaries running within time t. The CDH-Assumption
states that Succcdh

g,G(t) ≤ ε for any t/ε not too large.

4 Security Proof for the OMDHKE Protocol

In this section we show that the OMDHKE protocol distributes session keys that are semantically-
secure and provides unilateral authentication of the server S. The specification of this protocol
is found on Figure 1.

Theorem 1 (AKE/UA Security). Let us consider the protocol OMDHKE, over a group of
prime order q, where Password is a dictionary equipped with the distribution Dpw . For any
adversary A within a time bound t, with less than qs active interactions with the parties (Send-
queries) and qp passive eavesdroppings (Execute-queries), and asking qg and qh hash queries to
G and any Hi respectively,

Advake
omdhke(A) ≤

2qs

2`1
+ 12 ×Dpw (qs) + 12q2

h × Succcdh
g,G(t + 2τe) +

2Q2

q
,

SuccS−auth
omdhke(A) ≤

qs

2`1
+ 3 ×Dpw (qs) + 3q2

h × Succcdh
g,G(t + 3τe) +

Q2

2q
,
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where Q = qp + qs + qg and τe denotes the computational time for an exponentiation in G.

This theorem shows that the protocol is secure against dictionary attacks since the advantage
of the adversary essentially grows with the ratio of interactions (number of Send-queries) to the
number of passwords.

Proof. In this proof, we incrementally define a sequence of games starting at the real game G0

and ending up at G5. We use the Shoup’s lemma [13] to bound the probability of each event in
these games.
Game G0: This is the real protocol, in the random-oracle model. We are interested in the two
following events:

– S0 (for semantic security), which occurs if the adversary correctly guesses the bit b involved
in the Test-query;

– A0 (for S-authentication), which occurs if an instance Ai accepts with no partner instance
Sj (with the same transcript ((A,X?), (S, Y,Auth)).)

Advake
omdhke(A) = 2Pr[S0] − 1 Succ

S−auth
omdhke(A) = Pr[A0]. (1)

Actually, in any game Gn below, we study the event An, and the restricted event SAn = Sn∧¬An.
Game G1: In this game, we simulate the hash oracles (G, H0 and H1, but also additional
hash functions, for i = 0, 1: H′

i : {0, 1}? → {0, 1}`i that will appear in the Game G3) as usual
by maintaining hash lists ΛG , ΛH and ΛH′ (see Figure 2). We also simulate all the instances, as
the real players would do, for the Send-queries and for the Execute, Reveal and Test-queries (see
Figure 3). From this simulation, we easily see that the game is perfectly indistinguishable from
the real attack.

G
a
n
d
H

i
o
ra

cl
es

For a hash-query Hi(q) (resp. H′
i(q)), such that a record (i, q, r) appears in ΛH (resp. ΛH′), the

answer is r. Otherwise one chooses a random element r ∈ {0, 1}`, answers with it, and adds the
record (i, q, r) to ΛH (resp. ΛH′ ).
For a hash-query G(q) such that a record (q, r, ?) appears in ΛG , the answer is r. Otherwise the answer
r is defined according to the following rule:

IRule G(1)

Choose a random element r ∈ G. The record (q, r,⊥) is added to ΛG .

Note: the third component of the elements of this list will be explained later.

Fig. 2. Simulation of the hash functions

Game G2: For an easier analysis in the following, we cancel games in which some (unlikely)
collisions appear:

– collisions on the partial transcripts ((A,X ?), (S, Y )). Note that transcripts involve at least
one honest party, and thus one of X? or Y is truly uniformly distributed;

– collisions on the output of G.

Both probabilities are bounded by the birthday paradox:

Pr[Coll2] ≤
(qp + qs)

2

2q
+

q2
g

2q
. (2)

Game G3: We compute the session key sk and the authenticator Auth using the private oracles
H′

0 and H′
1 respectively:
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S
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n
d
-q

u
er
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s

to
A

We answer to the Send-queries to an A-instance as follows:

– A Send(Ai, Start)-query is processed according to the following rule:
IRule A1(1)

Choose a random exponent θ ∈ Zq, compute X = gθ and X? = X × PW.
Then the query is answered with (A, X?), and the instance goes to an expecting state.

– If the instance Ai is in an expecting state, a query Send(Ai, (S, Y, Auth)) is processed by com-
puting the authenticator and the session key. We apply the following rules:

IRule A2(1)

Compute KA = Y θ.

IRule A3(1)

Compute the authenticator and the session key:
Auth′ = H1(A‖S‖X

?‖Y ‖PW‖KA);
skA = H0(A‖S‖X

?‖Y ‖PW‖KA).

If Auth = Auth′, the instance accepts. In any case, the instance terminates.

S
en

d
-q

u
er

ie
s

to
S

We answer to the Send-queries to a S-instance as follows:

– A Send(Sj , (A, X?))-query is processed according to the following rules:
IRule S1(1)

Choose a random exponent ϕ ∈ Zq , compute Y = gϕ.
Then, the instance compute the authenticator and session key. We apply the following rules:

IRule S2(1)

Compute X = X?/PW and KS = Xϕ.

IRule S3(1)

Compute the authenticator and the session key:
Auth = H1(A‖S‖X

?‖Y ‖PW‖KS);
skS = H0(A‖S‖X

?‖Y ‖PW‖KS).

Then the query is answered with (S, Y, Auth), and the instance accepts and terminates.

O
th

er
q
u
er

ie
s An Execute(Ai, Sj)-query is processed using successively the above simulations of the Send-queries:

(A, X?)← Send(Ai, Start) and (S, Y, Auth)← Send(Sj , (A, X?)), and then outputting the transcript
((A, X?), (S, Y, Auth)).
A Reveal(U)-query returns the session key (skA or skS) computed by the instance U (if the latter
has accepted).
A Test(U)-query first gets sk from Reveal(U), and flips a coin b. If b = 1, we return the value of the
session key sk, otherwise we return a random value drawn from {0, 1}`.

Fig. 3. Simulation of the OMDHKE protocol

IRule A3/S3(3)

Compute the authenticator Auth = H′
1(A‖S‖X?‖Y ).

Compute the session key skA/S = H′
0(A‖S‖X?‖Y ).

Since we do no longer need to compute the values KA and KS , we can simplify the second
rules:

IRule A2/S2(3)

Do nothing.

Finally, one can note that the password is not used anymore either, then we can also simplify
the generation of X?, using the group property of G:

IRule A1(3)

Choose a random element x ∈ Zq and compute X? = gx.
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The games G3 and G2 are indistinguishable unless some specific hash queries are asked,
denoted by event AskH3 = AskH0w13 ∨ AskH13:

– AskH13: A queries H1(A‖S‖X?‖Y ‖PW‖KA) or H1(A‖S‖X?‖Y ‖PW‖KS) for some execu-
tion transcript ((A,X?), (S, Y,Auth));

– AskH0w13: A queries H0(A‖S‖X?‖Y ‖PW‖KA) or H0(A‖S‖X?‖Y ‖PW‖KS) for some exe-
cution transcript ((A,X?), (S, Y,Auth)), where some party has accepted, but event AskH13

did not happen.

The authenticator is computed with a random oracle that is private to the simulator, then
one can remark that it cannot be guessed by the adversary, better than at random for each
attempt, unless the same partial transcript ((A,X ?), (S, Y )) appeared in another session with
a real instance Sj . But such a case has already been excluded (in Game G2). A similar remark
can be led about the session key:

Pr[A3] ≤
qs

2`1
Pr[SA3] =

1

2
. (3)

When collisions of partial transcripts have been excluded, the event AskH1 can be split in 3
disjoint sub-cases:

– AskH1-Passive3: the transcript ((A,X?), (S, Y,Auth)) comes from an execution between in-
stances of A and S (Execute-queries or forward of Send-queries, replay of part of them).
This means that both X? and Y have been simulated;

– AskH1-WithA3: the execution involved an instance of A, but Y has not been sent by any
instance of S. This means that X? has been simulated, but Y has been produced by the
adversary;

– AskH1-WithS3: the execution involved an instance of S, but X ? has not been sent by any
instance of A. This means that Y has been simulated, but X ? has been produced by the
adversary.

Game G4: In order to evaluate the above events, we introduce a random Diffie-Hellman
instance (P,Q), (with both P ∈ G

? and Q ∈ G
?, which are thus generators of G. Otherwise, the

Diffie-Hellman problem is easy.) We first modify the simulation of the oracle G, involving the
element Q. The simulation introduces values in the third component of the elements of ΛG , but
does not use it.

IRule G(4)

Choose a random element k ∈ Z
?
q and compute r = Q−k. The record

(q, r, k) is added to ΛG .

We introduce the other part P of the Diffie-Hellman instance in the simulation of the party S.

IRule S1(4)

Choose a random element y ∈ Z
?
q and compute Y = P y.

It would let the probabilities unchanged, but note that we excluded the cases PW = 1 and
Y = 1:

|Pr[AskH4] − Pr[AskH3] | ≤
qs + qp

q
+

qg

q
. (4)

Game G5: It is now possible to evaluate the probability of the event AskH (or more precisely,
the sub-cases). Indeed, one can remark that the password is never used during the simulation, it
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can be chosen at the very end only. Then, an information-theoretic analysis can be performed,
which simply uses cardinalities of some sets.

To this aim, we first cancel a few more games, wherein for some pairs (X ?, Y ) ∈ G
2, involved

in a communication between an instance Sj and either the adversary or an instance Ai, there
are two distinct elements PW such that the tuple (X ?, Y,PW,CDHg,G(X?/PW, Y )) is in ΛH

(which event is denoted CollH5):

|Pr[AskH5] − Pr[AskH4] | ≤ Pr[CollH5]. (5)

Hopefully, event CollH5 can be upper-bounded, granted the following Lemma:

Lemma 2. If for some pair (X?, Y ) ∈ G
2, involved in a communication with an instance

Sj, there are two elements PW0 and PW1 such that (X?, Y,PWi, Zi) are in ΛH with Zi =
CDHg,G(X?/PWi, Y )), one can solve the computational Diffie-Hellman problem:

Pr[CollH5] ≤ q2
h × Succcdh

g,G(t + τe). (6)

Proof. Assume there exist such elements (X?, Y = P y) ∈ G
2, PW0 = Q−k0 , and PW1 = Q−k1 .

Note that

Zi = CDHg,G(X?/PWi, Y ) = CDHg,G(X? × Qki , Y )

= CDHg,G(X?, Y ) × CDHg,G(Q,Y )ki = CDHg,G(X?, Y ) × CDHg,G(P,Q)yki .

As a consequence, Z1/Z0 = CDHg,G(P,Q)y(k1−k0), and thus CDHg,G(P,Q) = (Z1/Z0)
u, where u

is the inverse of y(k1 − k0) in Zq. The latter exists since PW1 6= PW2, and y 6= 0. By guessing
the two queries asked to the Hi, one concludes the proof. ut

In order to conclude, let us study separately the three sub-cases of AskH1 and then AskH0w1

(keeping in mind the absence of several kinds of collisions: for partial transcripts, for G, and for
PW in H-queries):

– AskH1-Passive: About the passive transcripts (in which both X ? and Y have been simulated),
one can state the following lemma:

Lemma 3. If for some pair (X?, Y ) ∈ G
2, involved in a passive transcript, there is an

element PW such that (X?, Y,PW, Z) is in ΛH, with Z = CDHg,G(X?/PW, Y )), one can
solve the computational Diffie-Hellman problem:

Pr[AskH1-Passive5] ≤ qh × Succcdh
g,G(t + 2τe).

Proof. Assume there exist such elements (X? = gx, Y = P y) ∈ G
2 and PW = Q−k. As

above,
Z = CDHg,G(X?, Y ) × CDHg,G(Q,Y )k = P xy × CDHg,G(P,Q)yk.

As a consequence, CDHg,G(P,Q) = (Z/P xy)u, where u is the inverse of yk in Zq. The latter
exists since we have excluded the cases where y = 0 or k = 0. By guessing the query asked
to the Hi, one concludes the proof. ut

– AskH1-WithA: this event may correspond to an attack where the adversary tries to imperson-
ate S to A (break unilateral authentication). But each authenticator sent by the adversary
has been computed with at most one PW value. Without any G-collision, it corresponds to
at most one pw :

Pr[AskH1-WithA5] ≤ Dpw (qs).
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– AskH1-WithS: The above Lemma 2, when applied to games where the event CollH5 did not
happen (and without G-collision), states that for each pair (X ?, Y ) involved in a transcript
with an instance Sj , there is at most one element pw such that for PW = G(pw ) the
corresponding tuple is in ΛH: the probability over a random password is thus less than
Dpw (qs). As a consequence,

Pr[AskH1-WithS5] ≤ Dpw (qs).

About AskH0w1 (when the three above events did not happen), it means that only executions
with an instance of S (and either A or the adversary) may lead to acceptation. Exactly the
same analysis as for AskH1-Passive and AskH1-WithS leads to Pr[AskH0w15] ≤ Dpw (qs) + qh ×
Succcdh

g,G(t + 2τe). As a conclusion,

Pr[AskH5] ≤ 3Dpw (qs) + 2qh × Succcdh
g,G(t + 2τe). (7)

Combining all the above equations, one gets the announced result. ut

5 The DoS-Resistant OMDHKE Protocol

In a computing environment where Distributed DoS attacks are a continual threat, a server needs
to protect itself from non-legitimate clients that will exhaust its memory and computational
power. Intensive cryptographic computations (i.e. exponentiation), as well as states, are only
performed after a client proves to the server that it was able to solve a given “puzzle”. The
“puzzle” is chosen so that the client can only solve it by exhaustive search while the server can
quickly checks whether a given proposition solves it. This “puzzle” is chosen as follows.

The server first picks at random a MAC-symmetric key that it will use to authenticate cookie;
the MAC-key is used across multiple connections. The server then forms the authenticated cookie
which is the MAC of a random nonce and the date, and sends it to the client. The precision of
the date is determined according to the level of DoS required. The use of a cookie makes the
protocol stateless on the server side. Upon receiving the cookie, the client tries to find an input
which hashes to the NULL value. Since this hash function is seen as a random oracle, the only
way for the client to solve this “puzzle” is to run through all possible prefixed strings and query
the random oracle [4]. Later in practice this function is instantiated using specific functions
derived from standard hash functions such as SHA1. Once the client has found such a proof
of computational effort, it sends it back with the authenticated cookie and its Diffie-Hellman
public value to the server. Upon receiving these values the server checks whether the client is
launching a DoS attack by initiating several connections in parallel and replaying this proof of
computational effort on another connection. The server reaches this aim by locking the cookie
and not admitting the same cookie twice (hence the date in this challenge is used to tune the
size of the database). If all the checks verify, the server starts saving states and computing the
necessary exponentiations to establish a session key. From this point on the protocol works as
the original AuthA protocol, adding mutual authentication [2].

6 Conclusion

The above proof does not deal with forward-secrecy. Forward-secrecy entails that the corruption
of the password does not compromise the semantic security of previously established session
keys. One could easily prove that this scheme achieves forward secrecy, as in [8], while loosing a
quadratic factor in the reduction.
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Client A Server S

Initialization

pw ∈ Password, PW = G(pw) ∈ G

f : {0, 1}k0+k1+k2 −→ {0, 1}k, a random function with k0 + k1 + k2 ≤ k

skS
R
← {0, 1}mac

accept← terminate← false

A
−−−−−−−−−−−−−−−−−→ nS

R
← {0, 1}k0 , NS = nS‖date ∈ {0, 1}k0+k1

S, NS , cookie
←−−−−−−−−−−−−−−−−− cookie← MACskS(A, S, NS)

accept← terminate← false

Find r ∈ {0, 1}k2 , f(NS‖r) = 0k

x
R
← Zq, X ← gx, X? ← X × PW

A, X?, NS , r, cookie
−−−−−−−−−−−−−−−−−→ Lock record NS in List

Check whether (NS, ?, ?) 6∈ List?

date is fine?f(NS‖r) = 0k?
and cookie = MACskS(A, S, NS)?

X ← X?/PW,

y
R
← Zq , Y ← gy

KS ← Xy

AuthS ←H1(A‖S‖X
?‖Y ‖PW‖KS)

Auth′
A ← H2(A‖S‖X

?‖Y ‖PW‖KS)
skS ←H0(A‖S‖X

?‖Y ‖PW‖KS)

KA ← Y x S, Y, AuthS, NS
←−−−−−−−−−−−−−−−−− Just store (NS , Auth′

A, skS) in List

AuthS
?
= H1(A‖S‖X

?‖Y ‖PW‖KA)
if true, accept← true

AuthA ←H2(A‖S‖X
?‖Y ‖PW‖KA)

A,AuthA, NS
−−−−−−−−−−−−−−−−−→ AuthA

?
= Auth′

A

if true, accept← true

skA ←H0(A‖S‖X
?‖Y ‖PW‖KA)

terminate← true terminate← true

Fig. 4. An execution of the protocol OMDHKE, run between a client and a server, enhanced with mutual authen-
tication and a denial-of-service protection.

In conclusion, this paper provides strong security arguments that support the standardiza-
tion of the AuthA protocol by the IEEE P1363.2 Standard working group on password-based
public key cryptography, similar to the security results for PAK [7]. We have indeed presented
a new compact and “elegant” proof of security for the AuthA protocol [3] when the symmetric-
encryption primitive is instantiated using a mask generation function, which extends our previous
work when the symmetric-encryption primitive is assumed to behave like an ideal cipher [8]. The
security of the protocol was indeed stated as an open problem by its designers. In our study, the
symmetric encryption basic block takes the form of a multiplication in the Diffie-Hellman group.
Our result is a significant departure from previous known results since the security of AuthA can
now be based on weaker and more reasonable assumptions involving both the random-oracle
model and the computational Diffie-Hellman problem. Moreover, we investigate and propose a
practical, reasonable solution to make the protocol secure against DoS attacks. One can also
find further studies on the variant in which both flows are encrypted between the client and the
server in the appendix.
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A The Masked Diffie-Hellman Key Exchange Scheme

A.1 Description of the Scheme

In this scheme, as before, the arithmetic is in a finite cyclic group G = 〈g〉 of order a `-bit
prime number q, where the operation is denoted multiplicatively. A hash function from {0, 1}?

to {0, 1}` is denoted H. While G denotes a full-domain hash function from {0, 1}? into G. As
illustrated on Figure 5 (with an honest execution of the MDHKE protocol), the protocol runs
between two parties A and S, and the session-key space SK associated to this protocol is {0, 1}`

equipped with a uniform distribution. It works as follows. The client chooses at random a private
random exponent x and computes its Diffie-Hellman public value gx. The client encrypts this
latter value using a mask generation function, as the product of a Diffie-Hellman value with
a full-domain hash of the password, and sends it to the server. The server in turn chooses at
random a private random exponent y and computes its Diffie-Hellman public value gy which it
encrypts using the mask generation function. The client (resp. server) then decrypts the flow it
has received and computes the session key.
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Client Server

pw ∈ Password, PW = G(pw) ∈ G

accept← false accept← false

x
R
← Zq y

R
← Zq

X ← gx Y ← gy

X? ← X × G(pw)
A, X?

−−−−−−−−−−−→ X ← X?/PW

Y ← Y ?/PW
S, Y ?

←−−−−−−−−−−− Y ? ← Y × PW

sk = H(A‖S‖X?‖Y ?‖PW‖Y x) sk = H(A‖S‖X?‖Y ?‖PW‖Xy)

accept← true accept← true

Fig. 5. An execution of the protocol MDHKE.

A.2 Square Diffie-Hellman Assumption

A variant to the classical computational Diffie-Hellman problem is the particular case where
y = x: the computational square Diffie-Hellman problem, against which the success of any
adversary is

Succ
csqdh
g,G (∆) = Pr

x
[∆(gx) = gx2

].

The same way as before, one defines Succ
csqdh
g,G (t).

Granted 4xy = (x + y)2 − (x − y)2, one gets

CDHg,G(X,Y ) =

(

CSQDHg,G(XY )

CSQDHg,G(X/Y )

)1/4

.

The random self-reducibility CSQDHg,G(Xr)CSQDHg,G(X)r
2
, since G is a prime order group,

leads to

Succcdh
g,G(2t + 5τe + 2τm + 3τi) ≥

(

Succ
csqdh
g,G (t)

)2
,

where τe denotes the time for an exponentiation in G, τm the time for a multiplication in G,
and τi the time for an inversion in Z

?
q. Therefore, the square Diffie-Hellman problem is as hard

as the basic computational Diffie-Hellman problem.

A.3 Security Result

In this section, we assert that under the intractability of the above square Diffie-Hellman prob-
lem, the EKE protocol, with a one-time pad (hence named MDHKE), securely distributes session
keys: the key is semantically secure.

Theorem 4 (AKE Security). Let us consider the above protocol MDHKE, over a group of
prime order q, where Password is a dictionary equipped with the distribution Dpw . Let A be an
adversary against the AKE security within a time bound t, with less than qs active interactions
with the parties (Send-queries) and qp passive eavesdroppings (Execute-queries), and, asking qg

and qh hash queries to G and H respectively. Then we have

Advake
mdhke(A) ≤ 2 ×Dpw (qs) + 4q2

h × Succ
csqdh
g,G (t + 3τe) +

(qp + qs)
2 + 3q2

g

q
,



14

where τe denotes the computational time for an exponentiation in G.

Proof. This proof is very similar to the previous one. However, in this new proof, we are just
interested in the event Sn, which occurs if b = b′, where b is the bit involved in the Test-query,
and b′ is the output of the AKE-adversary. Let us thus briefly present the sequence of games.
Game G0: This is the real protocol, in the random-oracle model. By definition, we have

Advake
mdhke(A) = 2Pr[S0] − 1. (8)

Game G1: In this game, we simulate the hash oracles (G and H, but also an additional hash

G
a
n
d
H

o
ra

cl
es

For a hash-query H(q) (resp. H′(q)), such that a record (q, r) appears in ΛH (resp. ΛH′), the answer
is r. Otherwise one chooses a random element r ∈ {0, 1}`, answers with it, and adds the record (q, r)
to ΛH (resp. ΛH′).
For a hash-query G(q) such that a record (q, r, ?) appears in ΛG , the answer is r. Otherwise the answer
r is defined according to the following rule:

IRule G(1)

Choose a random element r ∈ G. The record (q, r,⊥) is added to ΛG .

Note: the third component of the elements of this list will be explained later.

Fig. 6. Simulation of the MDHKE protocol

function H′ : {0, 1}? → {0, 1}` that will appear in the Game G3) as usual by maintaining hash
lists ΛG , ΛH and ΛH′ (see Figure 6). We also simulate all the instances, as the real players would
do, for the Send-queries and for the Execute, Reveal and Test-queries (see Figure 7). From this
simulation, we easily see that the game is perfectly indistinguishable from the real attack.
Game G2: As in the previous proof, for an easier analysis in the following, we cancel games
in which some collisions appear:

– collisions on the transcripts ((A,X?), (S, Y ?));
– collisions on the output of G.

Both probabilities are bounded by the birthday paradox:

Pr[Coll2] ≤
(qp + qs)

2

2q
+

q2
g

2q
. (9)

Game G3: In this game, we do not compute the session key sk using the oracle H, but using
the private oracle H′ so that the value sk is not only completely independent from H, but also
independent from pw and thus from both KA and KS . We reach this aim by using the following
rules:

IRule A3/S3(3)

Compute the session key skA/S = H′(A‖S‖X?‖Y ?).

Since we do no longer need to compute the values KA and KS , we can also simplify the second
rules:

IRule A2/S2(3)

Do nothing.
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S
e
n
d
-q

u
er

ie
s

to
A

We answer to the Send-queries to an A-instance as follows:

– A Send(Ai, Start)-query is processed according to the following rule:
IRule A1(1)

Choose a random exponent θ ∈ Zq, compute X = gθ and X? = X × PW.
Then the query is answered with (A, X?), and the instance goes to an expecting state.

– If the instance Ai is in an expecting state, a query Send(Ai, (S, Y ?)) is processed by computing
the session key. We apply the following rules:

IRule A2(1)

Compute Y = Y ?/PW and KA = Y θ.

IRule A3(1)

Compute the session key skA = H(A‖S‖X?‖Y ?‖PW‖KA).

Finally the instance accepts.

S
en

d
-q

u
er

ie
s

to
S

We answer to the Send-queries to a S-instance as follows:

– A Send(Sj , (A, X?))-query is processed according to the following rules:
IRule S1(1)

Choose a random exponent ϕ ∈ Zq , compute Y = gϕ and Y ? = Y × G(pw).
Then the query is answered with (S, Y ?), and the instance applies the following rules.

IRule S2(1)

Compute X = X?/PW and KS = Xϕ.

IRule S3(1)

Compute the session key skS = H(A‖S‖X?‖Y ?‖PW‖KS).

Finally, the instance accepts.

O
th

er
q
u
er

ie
s An Execute(Ai, Sj)-query is processed using successively the above simulations of the Send-queries:

(A, X?) ← Send(Ai, Start) and (S, Y ?) ← Send(Sj , (A, X?)), and outputting the transcript
((A, X?), (S, Y ?)).
A Reveal(U)-query returns the session key (skA or skS) computed by the instance I (if the latter has
accepted).
A Test(U)-query first gets sk from Reveal(U), and flips a coin b. If b = 1, we return the value of the
session key sk, otherwise we return a random value drawn from {0, 1}`.

Fig. 7. Simulation of the MDHKE protocol

The games G3 and G2 are indistinguishable unless the following event AskH occurs: A
queries the hash function H on A‖S‖X?‖Y ?‖PW‖KA or on A‖S‖X?‖Y ?‖PW‖KS , for some
execution transcript ((A,X?), (S, Y ?)). This means that, for some transcript ((A,X ?), (S, Y ?)),
which number is upper-bounded by qs + qp, the tuple (X?, Y ?,PW,CDHg,G(X?/PW, Y ?/PW))
lies in the list ΛH.

On the other hand, the session key is computed with a random oracle that is private to
the simulator, then one can remark that it cannot be distinguished by the adversary unless the
same transcript ((A,X?), (S, Y ?)) appeared in another session, for which a Reveal-query has
been asked (which event has been excluded in the previous game):

Pr[S3] =
1

2
. (10)

Actually, one does not need the password for the simulation either: we can formally simplify
again some rules but thus without modifying anything w.r.t. the probabilities:

IRule A1(3)

Choose a random element x ∈ Zq and compute X? = gx.
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IRule S1(3)

Choose a random element y ∈ Zq and compute Y ? = gy.

Game G4: In order to evaluate the probability of event AskH, let us modify the simulation of
the oracle G, with a random Q ∈ G\{1} (which is thus a generator of G, since the latter has a
prime order q). The simulation introduces values in the third component of the elements of ΛG ,
but does not use it. It would let the probabilities unchanged, but we exclude the case PW = 1:

IRule G(4)

Choose a random element k ∈ Z
?
q and compute r = Q−k. The record

(q, r, k) is added to ΛG .

Since we just exclude k = 0, we have:

|Pr[AskH4] − Pr[AskH3] | ≤
qg

q
. (11)

Game G5: It is now possible to evaluate the probability of the event AskH. Indeed, one
can remark that the password is never used during the simulation. It thus does not need
to be chosen in advance, but at the very end only, to check whether the event AskH hap-
pened or not. To make this evaluation easier, we cancel the games wherein for some pair
(X?, Y ?) ∈ G

2, involved in a communication, there are two elements PW 6= 1 such that the
tuple (X?, Y ?,PW,CDHg,G(X?/PW, Y ?/PW)) is in ΛH (which event is denoted CollH5). Hope-
fully, event CollH5 can be upper-bounded, granted the following Lemma:

Lemma 5. For any pair (X?, Y ?) ∈ G
2, involved in a communication, there is at most one

element PW 6= 1 such that (X?, Y ?,PW,CDHg,G(X?/PW, Y ?/PW)) in ΛH, unless one can solve
the square Diffie-Hellman problem:

Pr[CollH5] ≤ q2
h × Succ

csqdh
g,G (t + 3τe). (12)

Proof. Assume there exist (X? = gx, Y ? = gy) ∈ G
2 involved in a communication, PW0 =

Q−k0 6= 1, and PW1 = Q−k1 6= 1 such that the tuple

(X?, Y ?,PWi, Zi = CDHg,G(X?/PWi, Y
?/PWi))

is in ΛH, for i = 0, 1. Then,

Zi = CDHg,G(X? × Qki , Y ? × Qki)

= CDHg,G(X?, Y ?) × CDHg,G(X? × Y ?, Q)ki × CSQDHg,G(Q)k
2
i

Zk0
1 /Zk1

0 = CDHg,G(X?, Y ?)k0−k1 × CSQDHg,G(Q)k0k1(k1−k0).

Since (X?, Y ?) ∈ G
2 has been involved in a communication (either from Send-queries or an

Execute-query), one of X?gx or Y ? = gy, has been simulated: at least one of x or y is known,
and thus Z = CDHg,G(X?, Y ?) is so too. As a consequence,

CSQDHg,G(Q) =
(

(Z1/Z)k0 × (Z0/Z)−k1

)u
,

where u is the inverse of k0k1(k1 − k0) in Zq. The latter exists since PW1 6= PW2, and they are
both distinct of 1. By guessing the two queries asked to H, one concludes the proof. ut

For a more convenient analysis, we can split the event AskH in two disjoint sub-cases:
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1. AskHPassive, where the transcript ((A,X?), (S, Y ?)) involved in the crucial H-query comes
as an answer from an Execute-query;

2. AskHActive, the other cases.

About the active case (the event AskHActive5), the above Lemma 5 applied to games where
the event CollH5 did not happen only states that for each pair (X ?, Y ?) involved in an active
transcript, there is at most one PW such that the corresponding tuple is in ΛH. Since we also
excluded games with collisions on G, the latter is an injection and thus the uniqueness of PW

translates to the uniqueness of pw such that PW = G(pw ):

Pr[AskHActive5] ≤ Dpw (qs). (13)

Moreover, in the particular case of passive transcripts, one can state a stronger result:

Lemma 6. For any pair (X?, Y ?) ∈ G
2, involved in a passive transcript, there is no element

PW 6= 1 such that (X?, Y ?,PW,CDHg,G(X?/PW, Y ?/PW)) in ΛH, unless one can solve the
square Diffie-Hellman problem:

Pr[AskHPassive5] ≤ qh × Succ
csqdh
g,G (t + 3τe). (14)

Proof. Assume there exist (X? = gx, Y ? = gy) ∈ G
2 involved in a passive transcript, and

PW = Q−k 6= 1 such that the tuple (X?, Y ?,PW, Z = CDHg,G(X?/PW, Y ?/PW)) is in ΛH.
Then, as above,

Z = gxy × Qk(x+y) × CSQDHg,G(Q)k
2
.

As a consequence,
CSQDHg,G(Q) =

(

Z × PWx+y/gxy
)u

,

where u is the inverse of k2 in Zq. By guessing the query asked to H, one concludes the proof. ut

As a conclusion,

Pr[AskH5] ≤ qh × Succ
csqdh
g,G (t + 3τe) + Dpw (qs). (15)

Combining all the above equations, one gets

Advake
mdhke(A) ≤ 2 ×





Dpw (qs) + qh × Succ
csqdh
g,G (t + 3τe) + q2

h × Succ
csqdh
g,G (t + 3τe)

+
qg

q
+

q2
g

2q
+

(qp + qs)
2

2q



 .

ut


